test

#> asaur::pharmacoSmoking
#> Relative Efficiency: 1.14
#>                                 term   family estimate stderr pvalue     method
#> 1  Surv(time = ttr, event = relapse)    PATED   -0.538   0.20 0.0071      PATED
#> 2  Surv(time = ttr, event = relapse)    coxph   -0.605   0.21 0.0046   Standard
#> 3                                age gaussian    2.170   2.10 0.3011 Prognostic
#> 4                       yearsSmoking gaussian    1.963   2.08 0.3442 Prognostic
#> 5                      priorAttempts gaussian   15.514  16.28 0.3406 Prognostic
#> 6                     longestNoSmoke gaussian  116.806 191.48 0.5419 Prognostic
#> 7                             gender binomial    0.074   0.37 0.8432 Prognostic
#> 8                 I(race == "black") binomial   -0.543   0.40 0.1700 Prognostic
#> 9              I(race == "hispanic") binomial    0.051   0.73 0.9441 Prognostic
#> 10                I(race == "white") binomial    0.467   0.37 0.2090 Prognostic
#> 11             I(employment == "ft") binomial   -0.149   0.36 0.6809 Prognostic
#> 12             I(employment == "pt") binomial    0.054   0.57 0.9241 Prognostic
#> 13        I(levelSmoking == "heavy") binomial    0.089   0.40 0.8224 Prognostic
#>       corr
#> 1       NA
#> 2   1.0000
#> 3  -0.2144
#> 4  -0.1494
#> 5   0.0187
#> 6  -0.1463
#> 7  -0.0740
#> 8   0.0816
#> 9  -0.0420
#> 10 -0.0243
#> 11 -0.1217
#> 12  0.1133
#> 13 -0.0067
#> coin::glioma
#> Relative Efficiency: 1.66
#>                               term   family estimate stderr  pvalue     method
#> 1 Surv(time = time, event = event)    PATED   -1.423   0.35 5.6e-05      PATED
#> 2 Surv(time = time, event = event)    coxph   -1.829   0.46 5.9e-05   Standard
#> 3                              age gaussian   -3.272   4.61 4.8e-01 Prognostic
#> 4                              sex binomial    0.095   0.66 8.9e-01 Prognostic
#> 5            I(histology == "GBM") binomial   -1.012   0.68 1.4e-01 Prognostic
#>   corr
#> 1   NA
#> 2 1.00
#> 3 0.33
#> 4 0.13
#> 5 0.59
#> iBST::burn
#> Relative Efficiency: 1.15
#>                           term   family estimate stderr pvalue     method
#> 1  Surv(time = T3, event = D3)    PATED   -0.582   0.27  0.033      PATED
#> 2  Surv(time = T3, event = D3)    coxph   -0.561   0.29  0.055   Standard
#> 3                           Z2 binomial   -0.083   0.39  0.831 Prognostic
#> 4                           Z3 binomial    0.088   0.49  0.858 Prognostic
#> 5                           Z5 binomial   -0.125   0.33  0.701 Prognostic
#> 6                           Z6 binomial    0.442   0.40  0.263 Prognostic
#> 7                           Z7 binomial    0.821   0.46  0.073 Prognostic
#> 8                           Z8 binomial   -0.256   0.33  0.437 Prognostic
#> 9                           Z9 binomial    0.294   0.35  0.407 Prognostic
#> 10                         Z10 binomial   -0.448   0.36  0.209 Prognostic
#> 11                 I(Z11 == 1) binomial    0.541   0.73  0.456 Prognostic
#> 12                 I(Z11 == 2) binomial   -0.718   0.51  0.162 Prognostic
#> 13                 I(Z11 == 3) binomial    0.405   0.65  0.532 Prognostic
#> 14                          Z4 gaussian   -5.483   3.17  0.084 Prognostic
#>      corr
#> 1      NA
#> 2   1.000
#> 3  -0.149
#> 4   0.215
#> 5   0.029
#> 6   0.113
#> 7   0.055
#> 8  -0.035
#> 9  -0.042
#> 10 -0.013
#> 11 -0.104
#> 12  0.025
#> 13  0.195
#> 14  0.074
#> invGauss::d.oropha.rec
#> Relative Efficiency: 1.06
#>                                term   family estimate stderr pvalue     method
#> 1 Surv(time = time, event = status)    PATED  0.16718  0.166   0.31      PATED
#> 2 Surv(time = time, event = status)    coxph  0.17374  0.171   0.31   Standard
#> 3                       I(sex == 1) gaussian  0.00065  0.061   0.99 Prognostic
#> 4                               age gaussian -0.37169  1.568   0.81 Prognostic
#> 5                            tstage gaussian -0.03691  0.117   0.75 Prognostic
#> 6                            nstage gaussian  0.13222  0.170   0.44 Prognostic
#>    corr
#> 1    NA
#> 2 1.000
#> 3 0.050
#> 4 0.019
#> 5 0.181
#> 6 0.118
#> JM::aids.id
#> Relative Efficiency: 1.25
#>                               term   family estimate stderr pvalue     method
#> 1 Surv(time = Time, event = death)    PATED   -0.247   0.13  0.059      PATED
#> 2 Surv(time = Time, event = death)    coxph   -0.210   0.15  0.150   Standard
#> 3                              CD4 gaussian   -0.213   0.44  0.624 Prognostic
#> 4                           gender binomial   -0.016   0.31  0.959 Prognostic
#> 5              I(prevOI == "AIDS") binomial    0.084   0.20  0.668 Prognostic
#> 6          I(AZT == "intolerance") binomial   -0.080   0.19  0.676 Prognostic
#>    corr
#> 1    NA
#> 2  1.00
#> 3 -0.40
#> 4 -0.03
#> 5  0.35
#> 6 -0.23
#> mlr3proba::actg
#> Relative Efficiency: 1.09
#>                                term   family estimate stderr pvalue     method
#> 1  Surv(time = time, event = event)    PATED  -0.6755   0.21 0.0011      PATED
#> 2  Surv(time = time, event = event)    coxph  -0.6844   0.22 0.0015   Standard
#> 3                            strat2 binomial  -0.0011   0.12 0.9930 Prognostic
#> 4                               sex binomial   0.1517   0.16 0.3303 Prognostic
#> 5                    I(ivdrug == 1) binomial   0.0328   0.16 0.8388 Prognostic
#> 6                    I(raceth == 1) binomial   0.0665   0.12 0.5731 Prognostic
#> 7                    I(raceth == 2) binomial  -0.0183   0.13 0.8884 Prognostic
#> 8                    I(raceth == 3) binomial  -0.0774   0.15 0.6168 Prognostic
#> 9                          hemophil binomial  -0.4126   0.35 0.2387 Prognostic
#> 10                 I(karnof == 100) binomial  -0.0537   0.12 0.6655 Prognostic
#> 11                  I(karnof == 90) binomial   0.0587   0.12 0.6194 Prognostic
#> 12                  I(karnof == 80) binomial  -0.0460   0.16 0.7758 Prognostic
#> 13                  I(karnof == 70) binomial   0.1341   0.36 0.7089 Prognostic
#> 14                              cd4 gaussian   4.3155   4.13 0.2956 Prognostic
#> 15                         priorzdv gaussian   0.1439   1.72 0.9334 Prognostic
#> 16                              age gaussian   0.0503   0.52 0.9228 Prognostic
#>       corr
#> 1       NA
#> 2   1.0000
#> 3  -0.1825
#> 4   0.0011
#> 5   0.0398
#> 6   0.0048
#> 7  -0.0435
#> 8   0.0264
#> 9  -0.0164
#> 10 -0.0961
#> 11 -0.0467
#> 12  0.1200
#> 13  0.1489
#> 14 -0.1939
#> 15 -0.0396
#> 16  0.0609
#> joint.Cox::dataOvarian1
#> Relative Efficiency: 1.1
#>                                  term   family estimate stderr pvalue
#> 1 Surv(time = t.event, event = event)    PATED  -0.1651  0.077  0.033
#> 2 Surv(time = t.event, event = event)    coxph  -0.1696  0.081  0.036
#> 3                              CXCL12 gaussian  -0.0341  0.061  0.576
#> 4                               NCOA3 gaussian  -0.0583  0.060  0.331
#> 5                                PDPN gaussian   0.0238  0.066  0.720
#> 6                               TEAD1 gaussian   0.0086  0.067  0.897
#> 7                               TIMP2 gaussian   0.0381  0.061  0.535
#> 8                               YWHAB gaussian   0.0114  0.055  0.837
#>       method  corr
#> 1      PATED    NA
#> 2   Standard 1.000
#> 3 Prognostic 0.202
#> 4 Prognostic 0.154
#> 5 Prognostic 0.194
#> 6 Prognostic 0.188
#> 7 Prognostic 0.192
#> 8 Prognostic 0.088
#> pec::Pbc3
#> Relative Efficiency: 1.58
#>                                term   family estimate stderr pvalue     method
#> 1  Surv(time = days, event = event)    PATED   -0.193   0.17   0.25      PATED
#> 2  Surv(time = days, event = event)    coxph   -0.059   0.21   0.78   Standard
#> 3                               sex binomial    0.026   0.30   0.93 Prognostic
#> 4                     I(stage == 1) binomial   -0.107   0.31   0.73 Prognostic
#> 5                     I(stage == 2) binomial   -0.336   0.26   0.20 Prognostic
#> 6                     I(stage == 3) binomial    0.168   0.28   0.55 Prognostic
#> 7                     I(stage == 4) binomial    0.253   0.25   0.32 Prognostic
#> 8                           gibleed binomial   -0.590   0.31   0.06 Prognostic
#> 9                               age gaussian    0.142   1.06   0.89 Prognostic
#> 10                             crea gaussian   -1.150   1.97   0.56 Prognostic
#> 11                             bili gaussian    6.219   7.22   0.39 Prognostic
#> 12                            alkph gaussian  -12.043  80.43   0.88 Prognostic
#> 13                            asptr gaussian    2.641   5.68   0.64 Prognostic
#> 14                           weight gaussian    0.391   1.11   0.72 Prognostic
#>       corr
#> 1       NA
#> 2   1.0000
#> 3   0.1432
#> 4  -0.2463
#> 5  -0.1745
#> 6  -0.0013
#> 7   0.3681
#> 8   0.1358
#> 9   0.0618
#> 10 -0.1020
#> 11  0.4977
#> 12  0.0986
#> 13  0.2231
#> 14 -0.1465
#> pec::cost
#> Relative Efficiency: 1.47
#>                                 term   family estimate stderr pvalue     method
#> 1  Surv(time = time, event = status)    PATED -1.8e-01  0.079  0.024      PATED
#> 2  Surv(time = time, event = status)    coxph -1.4e-01  0.095  0.140   Standard
#> 3                                age gaussian  6.7e-01  0.899  0.458 Prognostic
#> 4                        strokeScore gaussian -5.1e-01  1.009  0.613 Prognostic
#> 5                            cholest gaussian  2.7e-02  0.118  0.819 Prognostic
#> 6                                sex binomial -1.1e-01  0.163  0.514 Prognostic
#> 7                             hypTen binomial  1.8e-01  0.173  0.300 Prognostic
#> 8                                ihd binomial -7.5e-17  0.217  1.000 Prognostic
#> 9                         prevStroke binomial -8.6e-02  0.207  0.679 Prognostic
#> 10                        othDisease binomial -2.6e-02  0.230  0.909 Prognostic
#> 11                           alcohol binomial -3.2e-01  0.175  0.068 Prognostic
#> 12                          diabetes binomial -1.6e-01  0.234  0.485 Prognostic
#> 13                             smoke binomial -2.3e-01  0.164  0.163 Prognostic
#> 14                         atrialFib binomial  3.3e-01  0.246  0.181 Prognostic
#> 15                             hemor binomial  3.0e-01  0.449  0.507 Prognostic
#>      corr
#> 1      NA
#> 2   1.000
#> 3   0.417
#> 4  -0.268
#> 5  -0.055
#> 6   0.097
#> 7   0.081
#> 8   0.133
#> 9   0.145
#> 10  0.139
#> 11 -0.122
#> 12  0.123
#> 13 -0.093
#> 14  0.203
#> 15  0.026
#> pec::GBSG2
#> Relative Efficiency: 1.18
#>                              term   family estimate stderr pvalue     method
#> 1 Surv(time = time, event = cens)    PATED    -0.33   0.11 0.0039      PATED
#> 2 Surv(time = time, event = cens)    coxph    -0.36   0.12 0.0034   Standard
#> 3                           tsize gaussian    -0.82   1.13 0.4693 Prognostic
#> 4                          pnodes gaussian     0.19   0.43 0.6641 Prognostic
#> 5                         progrec gaussian    22.29  17.83 0.2113 Prognostic
#> 6                I(tgrade == "I") binomial     0.24   0.24 0.3302 Prognostic
#> 7               I(tgrade == "II") binomial     0.11   0.17 0.5288 Prognostic
#> 8              I(tgrade == "III") binomial    -0.28   0.19 0.1469 Prognostic
#>     corr
#> 1     NA
#> 2  1.000
#> 3  0.169
#> 4  0.326
#> 5 -0.187
#> 6 -0.159
#> 7  0.006
#> 8  0.123
#> randomForestSRC::follic
#> Relative Efficiency: 1.11
#>                                term   family estimate stderr pvalue     method
#> 1 Surv(time = time, event = status)    PATED    -0.15   0.14   0.28      PATED
#> 2 Surv(time = time, event = status)    coxph    -0.23   0.15   0.12   Standard
#> 3                               age gaussian    -2.37   1.47   0.11 Prognostic
#> 4                               hgb gaussian     0.84   1.52   0.58 Prognostic
#>     corr
#> 1     NA
#> 2  1.000
#> 3  0.311
#> 4 -0.082