Package: gim 0.34.2

gim: Generalized Integration Model

Implements the generalized integration model, which integrates individual-level data and summary statistics under a generalized linear model framework. It supports continuous and binary outcomes to be modeled by the linear and logistic regression models. For binary outcome, data can be sampled in prospective cohort studies or case-control studies. Described in Zhang et al. (2020)<doi:10.1093/biomet/asaa014>.

Authors:Han Zhang, Kai Yu

gim_0.34.2.tar.gz
gim_0.34.2.zip(r-4.5)gim_0.34.2.zip(r-4.4)gim_0.34.2.zip(r-4.3)
gim_0.34.2.tgz(r-4.4-any)gim_0.34.2.tgz(r-4.3-any)
gim_0.34.2.tar.gz(r-4.5-noble)gim_0.34.2.tar.gz(r-4.4-noble)
gim_0.34.2.tgz(r-4.4-emscripten)gim_0.34.2.tgz(r-4.3-emscripten)
gim.pdf |gim.html
gim/json (API)

# Install 'gim' in R:
install.packages('gim', repos = c('https://zhangh12.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/zhangh12/gim/issues

Datasets:
  • dat - Data for example in 'gim'

On CRAN:

3.00 score 5 scripts 172 downloads 1 exports 1 dependencies

Last updated 3 years agofrom:f8ebca8e67. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-winOKNov 12 2024
R-4.5-linuxOKNov 12 2024
R-4.4-winOKNov 12 2024
R-4.4-macOKNov 12 2024
R-4.3-winOKNov 12 2024
R-4.3-macOKNov 12 2024

Exports:gim

Dependencies:numDeriv

Generalized Integration Model

Rendered fromgim.Rmdusingknitr::rmarkdownon Nov 12 2024.

Last update: 2020-06-24
Started: 2020-02-18